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X-ray bursting neutron stars

e X-ray bursting NSs — LMXBs with

thermonuclear explosions at the neutron star
surface

* Sometimes close to the Eddington limit
during the burst (photospheric radius
expansion (PRE) bursts)

e Spectra are well fitted by blackbodies

ldeal sources for NS masses and radii measurements
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Spectrum formation of X-ray bursting NSs

Compton scattering is important !!!
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Spectral fitting

Problem

R°(1+z)’

fE=FEK=FE ]

This Equation is correct for an isolated homogeneuos
NSonly!  Without any surrounding matter.



Two limit quiescent spectral states of LMXBs

4U 1724-307
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Hard spectral states of LMXBs

face-on system

L <005L_,

edge-on system

accretion disc

- -/

optlcally thin hot
X-ray bursting NS accretion flow

Influence of optically thin accretion flow is insignificant ?



X-ray burst at hard quiescent spectral state
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X-ray burst at soft quiescent spectral state

face-on system

. Lacc >0.1 LEdd
cosi=1

edge-on system i
cosi=0

accretlon disc

N heated part

of accretion disc

X-ray bursting NS

= gb A d2 Eb 5 +Cos i . anisotropy factor
(Lapidus & Sunyaev 1985)

Input of accretion disc reflection is significant for face-on systems

Accretion disc blocks a part of NS in edge-on systems
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Fey, (107 ergs” cm?)

X-ray burst at soft quiescent spectral state

4U 1608-52

Probably, face-on system
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Comparison with observations

Cooling tail method — we can estimate NS masses and radii
by fitting the observed curves K-F,, (K'*-F,,) with

the model curves w-wf'L/L,,, (f.-L/L,,)
Fitting parameters are F,, and Q=R*(+z)°/D* (A=Q"%)
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Mass (solar masses)

Helium accreting NSs
in systems 4U 1702-429 and 4U 1820-30

Direct cooling tail method. Result — > maps.
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Direct spectrum fitting method

24 observed spectra were simultaneously fitted by model spectra of hot NS
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Comparison with observations

Deviation from theory depends on the persistent flux
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“Clocked” burster GS 1826 - 24

Its atmosphere has to have solar chemical composition

(Heger et al. 2007). But the observed curve K™''* — F,, doesn’t
show depressionat L=0.1L_,, typical for model curves computed
for undisturbed atmospheres.
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Possible solution: Accretion of hot plasma
on the later burst phases

Hard state Neutron star



Accretion heated atmospheres
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Accretion heated atmospheres
Short history

Larkin (1960) - fast particle stopping in plasma

Zeldovich & Shakura (1969) — NS surface heated by fast particles
Alme & Wilson (1973) — the first numerical computations

Bildsten et al. (1992) - analytical description, heavy ions destruction
Turolla et al. (1994) — “hot” solutions (T up to 10! K)

Zampieri et al. (1995) — extension of AW73 computations

Zane et al. (1998) — spectra of “hot” solutions

Zane et al. (2000) — magnetized NS atmospheres heated by particles

Deufel et al. (2001) — application to hard quiescent spectra of LMXBs



Accretion heated atmospheres
Method of computation

The approach and the code used for undisturbed hot NS model
atmospheres computations was accepted (Suleimanov et al. 2012)

Additionally
o dH . dvu,
- energy generation in the heated layers —=-m v,
dm dm
dP. . dvu,
- ram pressure force g. . = ~—Mm,
dm dm
- electron thermal conductivity
dTl dH
(insignificant) H.~kT'"7?—, € =0
dm dm

dv, L L Z7
XV, P —
dm A




Accretion heated atmospheres
Adopted parameters

Neutronstar: M =1.67 Mg, R=12km, (=L/L,,
2GM\'"*
Uy =(T) =1.8%x10"cm/s= 0.6 ¢

GM Am, _ 0
kT = 1R E=A61 MeV (6.7x10°K)

Accretion flow: =La/LEdd va=@vﬁ, n<l

KT = (%) KT, <l @

- pure hydrogen A = 4 - pure helium

3 - solar hydrogen/helium mix



Low luminosity accretion heated atmospheres

with various impact angles U
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Helium atmospheres heated by a- particles

for different intrinsic luminosities.
All the accretion parameters are fixed..
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Accretion heated atmospheres with solar composition.
All the accretion parameters are fixed.
Iron absorption edge disappears
in the spectra of the heated atmospheres
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Accretion heated helium atmospheres. Fixed parameters.
How the “pseudo-observed” spectra were computed
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Model curves for the heated atmospheres

Color correction factors fc are larger, and dilution factors W
are smaller. Value of deviations is proportional to the accretion rate.
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Burster in ultracompact system 4U 1820 -- 30

Both model curves have the same fitting parameters
F., =0610"ergs'cm™)
Q = R*(1+z2)*/D* =500 km* /(10 kpc)*
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“Clocked” burster GS 1826 - 24

But the observed curve better fitted with
the “heated” model curve
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Conclusions

A method for computation of NS
atmospheres heated by fast particles
was developed.

Color correction factors fc are large
for heated atmospheres, and dilution
factors w are smaller.

Model curves w — ch4L/LEdd are well

fitting the observed curves K - F,,
at the later phases of the X-ray bursts.



