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Motivation
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Everybody fits exponentials to burst decays.
Is that justified?

Are there better functions?
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Motivation

- Cumming & Macbeth (2004) and
Cumming et al. (2008) fit broken
power laws to decays of
superbursts and intermediate
duration bursts

- What about 'ordinary’ bursts?

Time (hours)




Simple power law prediction

- HeatQ =mC, T
- dQ/dt=m C, dT/dt = -A o,z T4 > T (©) t/3
- L=dQ/dt (:) t4/3

- Assumptions
- Instantaneous heating
- Constant C,

- |If cooling is through conduction -

- dQ/dt (:) -T
- L (:) exp(-t/tau)
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2014 study — data selection and treatment

- Use best available data: the RXTE subset of MINBAR
- Select those bursts that
- Show no signs of rp burning 2> no bumps

- Show no signs of scattering and obscuration by disk - low-i
systems

- Show no signs of wildly varying accretion rate - no strong
and variable pre-burst flux and high peak/persistent flux
(generally =50)

- Add one intermediate duration and one superburst

- Result: 37 bursts out of 2280, from 15 of all kinds of sources,
always with fast rise (<2 s) -2 pure helium flashes, 29
Eddington-limited

- Do time-resolved spectroscopy with a fixed (and faint)
persistent spectrum throughout the burst and a Planck function
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Fit procedure

Fit exponential

Fit power law

Do It on count rate as well as
bolometric flux

Skip early phases

Power law tricky function: it
diverges at t=0 and the choice
of t, influences measurement
of a
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Object Bu. MID R Photon count rate history* Bol. flux history*

No." Exponential Power law Exponential Power law

T Xo a ol T v @ X

4U 0512-40" 2 51324.286947 223 13.8 3.0 1.707 £ 0.018 1.15 | 7.9 143 1.439 +0.022 0.38
4U 0512-407 15  54839.516222  27.7 11.4 2.5 1.715+£0.024 097 | 7.7 7.1 1.792 + 0.042 0.65
2S 0918-549 1 51676.826588 122.6 19.2 17.7  1.902+0.007 141 ] 13.8° 659 1.832+0.013 1.69
4U 1608-52 8 50914.274663  86.9 14.7 90.2  1.894 +£0.004 1.08 [ 145 1149 1.808 £0.016 1.74/8.31
4U 1608-52 9 51612.030846 59.5 10.1 63.2 1.820+0.004 149 | 38 1.2 2,141 £0.049 2.45
4U 1608-52 10 51614.071258 111.5 14.0 103.5 1.995+0.003 095 | 99 2488 2.000=+0.013 1.05/8.86
4U 1608-52 31 53104.407932  90.7 17.8 64.5 1.859+0.004 5.14 [ 13.0 2569 1.869+0.015 2.13/9.52
4U 1636-536 68  52286.054034 35.5 9.2 10.2  1.681 +£0.010 134 | 49 82.6 1.652+0.011 2.45
4U 1636-536 327  55394.904042  31.2 12.1 4.9 1.681 £0.016 1.06 | 5.2 43.7  1.592 +£0.014 1.67
4U 1702-429* 13 51939.193940 429 12.5 126  1.816+0.009 1.17 | 6.1 82.8 1.751 = 0.009 2.02
4U 1702-429 44 53212.793589  43.6 12.0 334 1.825+£0.006 143 7.8 1062 1.874+0.012 1.81/3.00
4U 1705-44" 51 54046.201890 33.9 12.4 4.4 1.863 £0.017 146 | 9.4 17.9  1.801 +£0.021 0.79
4U 1705-44" 77  55062.220583  29.8 11.4 2.7 1.807 £ 0.025 1.05 | 5.7 19.7  1.421 +£0.017 0.68
4U 1724-30 2 53058.401400 16.9 11.4 3.0 1.823 £ 0.028 0.96 | 4.6 28.5 1.651 £0.018 0.99
4U 1724-30 3 53147.218284  27.8 12.9 1.5 1.764 +0.014 131 | 54 71.1  1.857 +£0.012 1.19
4U 1728-34 76 51657.203264 33.0 8.1 93.1 1.786 £0.006 2.19 [ 6.7 76.1  1.781 £0.011 1.18
4U 1728-34 126 54120.25887  29.6 7.6 68.4 1.784 £0.007 2.02 | 6.4 67.0 1.835+0.010 1.00
IGR J17511-3057* 10 55099.313613 43.3 124 39 2303+£0.026 1.09 | 10.2 14.2 2.320 £0.033 1.89
IGR J17511-3057* 12 55101.289836 47.4 12.4 3.6 2.134+0.028 140 98 7.9  2.065 +£0.031 2.05
SAX J1808.4-3658 2 52564.305146  63.8 25.2 13.8  1.820+0.010 1.57 | 20.4 32.6 1.789 +0.023 1.27
SAX J1808.4-3658 3 52565.184268  74.8 24.9 27.0 1.896 £ 0.008 2.39 [ 22.0 50.3 1.814 £0.050 0.88/6.50
SAX J1808.4-3658 - 52566.426770  82.8 27.0 229 1984 +0.008 193 17.0 113.1 1.961 £0.033 1.75/9.30
SAX J1808.4-3658 6 53526.638240 76.5 29.1 18.6  1.868+0.010 220 | 17.0 71.6 1954 +0.048 0.67/6.27
SAX J1808.4-3658 7 54732.708128  95.0 30.2 82 2,089 +0.017 1.78 | 16.4 53.3 2231 +0.041 2.67/8.13
SAX J1808.4-3658 9 55873.916348  79.7 25.3 24.1  1.903 £0.008 1.45( 19.1 40.8 1.739+0.029 4.22/10.34
SAX J1810.8-2609 3 54590.729819  62.5 11.2 13.6  1.833+£0.010 1.14 | 11.6 9.2 1.633 + 0.029 1.24
4U 1820-30 5 53277.438562 13.3 6.4 54 2002+0.016 333]| 54 25.5  1.991 +0.020 0.75
4U 1820-30 12 540981.187286  15.1 5.2 143  1.901 +0.011 528 | 7.2 27.0  1.885 +0.021 2.09
HETE J1900.1-2455 3 54 506.856149  56.1 11.4 30.3  2.155+£0.007 322 79 1009 2276+0.015 1.74/3.01
HETE J1900.1-2455 5 54 925.796423  72.2 14.7 16,5 1.858+0.008 1.31 | 9.8 46.6  1.727 £ 0.015 1.77
HETE J1900.1-2455 6 55384.878220  86.5 14.7 38.2  2216+0.007 299 93 1374 2404 £0.015 6.31/11.16
HETE J1900.1-2455 7 55459.228637 59.3 11.3 50.1 2.234+0.005 359 93 20l.6 2289+0.014 3.71/11.09
Aql X-1 11 51336.590743  64.8 11.0 25.8 1.802+0.007 L.I8 [ 12.3 14.2 1.531 £0.027 1.73
Aql X-1 25  52100.799520 56.2 8.5 455 1.836+£0.005 1.25| 145 143 1.641 £0.026 1.01
Aqgl X-1 64  54259.247877 162.5 | 24.6 67.7 2.078 £0.004 2.56 [ 21.6 108.3 1.904 +£0.044 0.26/6.64
2S5 0918-549 5 54504.126944 158.8 | 110.6 34 1.372 £ 0.007 1.79 | 99.3 3.9 1.516 + 0.005 1.47
4U 1636-536" sb 51962.702961 5.2 | 4387.1 1.5 1.428 £ 0.004 1.23 [ 4879 5.0 1.321 + 0.004 1.59
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Not quite a 4/3 decay Index..

- Cooling is not everywhere (:) T4
but L (:) T9amma wijth gamma=4-
5

Photons

- Cp is not always constant:

- lons - ideal > :
Constant C, - alpha=1.25-1.33 Electrons

- Electrons > degenerate -
C. () T 2 alpha=1.67-2.0
- Photons -
C, (:) T > alpha>2.0
Lo
1 024
Flux [erg em™ s™'|
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- Determine alpha as a function of time/flux, including data >55%

- Plot data of all bursts per source in one diagram, for 5 sources (2 UCXBs and 3
ordinary LMXBS)

- UCXBs and H-poor bursts reasonably follow some trends
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2017 study

- Include all 2280 RXTE bursts from the MINBAR project
- Also those which do not show smooth decay
- Include only those 1254 cases with:

- Good guality (peak flux 5% accurate)

- Continuous data stretch

- Model spectra with black body and pre-burst model spectrum (disk
black body plus power law) with a free normalization (‘f, method") and
fixed N,

- Determine accurately start times of bursts

- Fit with exponential, single power law (2 parameters) and single power
law plus half-Gaussian centered at t=0 (4 parameters)

p -3 G _1_3?
— + c 2s°

lo V27s
 Motivation for Gauss!

- Select bursts with accurate enough decay index (<0.1) and burst
fluence (<20%) 1254 - 501

b
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2017 study

- Include all 2280 RXTE bursts from the MINBAR project
- Also those which do not show smooth decay
- Include only those 1254 cases with:

- Good quality (peak flux 5% accurate)

- Continuous data stretch

- Model spectra with black body and pre-burst model spectrum (disk
black body plus power law) with a free normalization (‘f, method") and
fixed N,

- Determine accurately start times of bursts

- Fit with exponential, single power law (2 parameters) and single power
law plus half-Gaussian centered at t=0 (4 parameters)

p -3 G . 1_3?
_— + c 2s°

lo V27s
 Motivation for Gauss!

- Select bursts with accurate enough decay index (<0.1) and burst
fluence (<20%) 1254 - 501

b



2280 bursts from 59 sources, select 1254

Source Numbers | Source Numbers
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2017 study

- Include all 2280 RXTE bursts from the MINBAR project
- Also those which do not show smooth decay
- Include only those 1254 cases with:

- Good quality (peak flux 5% accurate)

- Continuous data stretch

- Model spectra with black body and pre-burst model spectrum (disk
black body plus power law) with a free normalization (‘f, method') and
fixed N

- Determine accurately start times of bursts

- Fit with exponential, single power law (2 parameters) and single power
law plus half-Gaussian centered at t=0 (4 parameters)

__ [t a3 G B
F3(1) = F3(10) (—) + e 22

lo V27s
- Motivation for Gauss!

- Select bursts with accurate enough decay index (<0.1) and burst
fluence (<20%) 1254 - 501

b



Caveats

- Force G and s to be positive

- Pre-burst spectra simplified and shape fixed during bursts
- Ignore incidental absorption edges

- Ignore anisotropy

- Ignore oblateness NS

- Ignore deviations from Planck spectrum, should be OK within a
few percent for decay index for L=0.1 Ledd

Alternatives

- Leaving free Gaussian centroid results in unconstrained fits
- Broken power law fits no improvement
- Simplified physical model for rp process fits worse

b



Simplified rp model

Simplified rp model

Chain of rp process from
Wallace & Woosley 1981 and
Schatz 2001

Decay times and energies
from Sakharuk et al. 2006

Table A.1. Half-life and energy Q per 5* decay.

Isotope '

P—

2IM g 5.658 5504.18 | *Se 17.328 1818.97
0,180  12860.3 | 'S¢ 6.931 489227
3,180 551443 | *se 0,007 8996.11
0.314 128168 | T'Kr 7146 -21375
3.707 4399 | 7 1386 1707.62
0.587 1105004 | 7Sr 0347 4314.16
4.007 466276 Sr 0.139 874581
0.821 7564.61 / 3466 444944
2.027 1857.63 ; 0.693  8011.69
0.568 1090468 | 5 6.931 4136.41
0.806 1318145 | ) 0693 706391
3.466 918146 | ¥ 19.804 381397
13.862 488308 | * 0,693  5083.941
2.666 682834 41,258 4768.94
230104 623431 | 0.693  5673.911
6.931 9091.04 | #C 47.803 329297
15.403 385403 X 0.827 332097
6.931 461501 | 70 0.248  7827.497
3667 10136.09 ¢ 0.737  2679.14
6.931 2887.37 : 0.231 3428.97
3.301 7887.05 0.182 356897
13.862 2238.67 | 0.098  4324.97
3466 4855.66 0,033 6224.911

Q@ (keV) | lsotope 1 Q0 (keV)
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Kepler comparison (Lampe, Heger, Galloway 2016)

kepler_a28 mean txt

Moderately good :

How good are Kepler light curves?

Exponential fit
Expon. time: 27.68+/ 0.16 s (gof= 1.38)

o

Deviation [10” erg s']

Power law fit
Power law index: -0.304+/-0.001 {gof= 1.89)

_m
2
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o
pak
c
1=}
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Power law fit plu: - 0.19 s, fracgs= 0.04+/- 0.00)
Power law inc

Deviation [10” erg s"]
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First things first: spectral modeling

Bol. flux [107®
erg s”'cm™
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10* erg#:
Fluence : 8
Dwration : 104.00
Best fit model: 3.
Best fluence model
Best duration model: 3.

Flux [10° erg/s/cn’]

Exponential fit
Expon. time: 35.60+/- 0.37 s (chi*-red= 5.83)
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Goodness of fit
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2014 result

523 bursts (free f, ; average 1.79;, rms= 0.33)
I|IIII|IIII|IIII|IIII|IIII|I

1.5 2.0 25 3.0
Power-law decay index




Decay Indices in individual sources

12 bursts (free I, ; average 1.91; rms= 0.11)

114 bursts (free I, [ average 1.83; rms= 0.32)

I|IIII|IIII|IIII|IIII|IIII|IL

4U 1820-30

_IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|III_

41 1636-536

'1IIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|I

0.5 1.0 1.5 2.0 25 3.0
Power-faw decay index

571 bursts (free f, ; average 1.62; rms= 0.12)

0.5 1.0 1.5 2.0 25 3.0
Power-law decay index

70 bursts (free f, ; average 2.06; rms= (0.22)

JI|IIII|IIII|IIII|IIII|IIII||L

GS 1826-24

4U1728-34

_II|IIII|IIII|IIT||IIII|IIII|II_

I|IIII|I|_I|I|—I||IIII|IIII|IIII|I

0.5 1.0 1.5 2.0 25 3.0
Power-faw decay index

05 10 1.5 20 25 30
Power-law decay index




rp component

276 bursts (free f, ; average 0.31; rms= 0.18)

0.2 0.4 0.6 0.8
Fluence fraction f in Gauss

5.6X X
i < 0.65,s50 5 <0.53

For cosmo/solar abundances -
suggests H depleted by factor =5




Time scale rp component

242 bursts (free f, ; average 40.45; rms=17.37)
I | I I I I | I I I I | I I I I

100
Gaussian width s (sec)

Fig. 7. Histogram of Gaussian width s, as found from fitting with
Eq. (3). The peak at 48 s is due to bursts from GS 1826-24, as indi-
cated by the dark gray shaded part of the histogram. Note the cutoff at

Simplified rp model
A o T rEr R

Energy output [keV/s/seed—nucleus]

- up to at least 42Ti
for GS 1826-24
- But not as far for

most other bursts
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- UCXBs and H-poor bursts reasonably consistent with models. Others not -2 rp
- Lesson: it is not possible to model changing index and rp at the same time
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Conclusions

- Decays better described by power law plus one-sided Gaussian than by
exponential

- Hydrogen-deficient ultracompact X-ray binaries always lack Gaussian
component

- (Gaussian representative of rp process
- Decay index
- Close to constant in each burst

- Varies between 1.3 to 2.2 from burst to burst, except within GS
1826-24 and 4U 1820-30

- Independent of being UCXB

- Probably most strongly depends on ignition depth > m-dot
- No correlation between power law and Gaussian
- GS 18126-24 exceptional case

- Narrow range

- Very slowly changing accretion rate (up to 2015)

- Largest Gaussian component - highest H content

b



Thank you
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