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BB} Nuclear Astrophysics is Enabled by Close Connections
across Various Subfields
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What is the origin of the elements?
What is the nature of dense matter?

Telescopes
(optical, UV, X-ray, GW)
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Accreting Neutron Stars: Nature’s Dense Matter Laboratory
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B Nuclear Reactions Connect Neutron Star

Physics with Burst Observations
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3
M Burst Physics Impacts Crust Physics
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Te| Multi-Institutional JINA/JINA-CEE effort:

De « EC/B strength: QRPA (P. Moeller, S. Gupta, W. Hitt)
Yn « Masses: AME2012, FRDM (P. Moeller)
EF . n-capture rates: TALYS (S. Goriely, Y. Xu) with corrections from P. Shternin
EF . Pycnonuclear fusion rates: M. Beard, A. Afanasjev, L. Gasques, M. Wiescher, D.
Ma Yakovlev
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Observable Probes can Constrain a Wide Range of
System Physics if Nuclear Physics is in Placce
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- Need better observational data

AND better nuclear physics



B A New Generation of Rare Isotope Facilities

Can Astronomy Help?
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Nuclear physics for GS1826-24 light curve o7

——— Reaction rate uncertainty

As

Nuclear Physics Road Map Emerging
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252 = Many more rates and masses affect
composition (not fully identified)
- We are just at the beginning of figuring

out the nuclear physics connection
= Full analysis of composition impacts
— Other burst types
— Broader range of parameters to enable

parameter fitting to observations

— Use full 1D models
See talk by Adam Jacobs



B (o, p) reactions — major surprises

new data question commonly used statistical model rates
18Ne(a,p)?tNa Mohr et al. 2014 10! | .- Inverse

i 33CI(p,a)34Ar
24Mg(p,t)*2Mg RCNP (Matic 2012) HL at ANL

10° |

2INa(p,p)?*Na CRIB (Hu 2013, Zhang 2014)

Deibel et al. 2011
10 \

b

Cross Section (mb)

L} T T T T T T T ] T L} T T
—- - T, kauschcr et al.,

— (po,a) NON-SMOKER e
ADNDT 75,1 (2000) 101 | / Statistical model

T L] ] T L) T ' T T Ll
e Salter e)el.

W original (pg,ag) data

Long et al. TBP

10t |

. x10 too low
A \ 4 ,
N
& 1 6 7 8
\ c. m. Energy (MeV)

<

Z
A
>
&

\%
<

=,

34Ar(o£.p)37K*
Statistical model ) :

1°° iStatistical model
2 Ll TR within x2-3 al

s/ 10 s 200 25 30 2 \( ’
/ T, i (p,t) ITHEMBA |

Inverse 2!Na(p,o.)'8Ne TRIUMF 2 A ture oK) 2 3
Salter 2012 (lower limit)

Normalized to
NON-SMOKER"EB
o o

[
o
b

Statistical model x100 too high

@ JINA-CEE

(" NSF Physics Frontiers Center

Ss =

X



Data - Bckd

22000

Counts / 5 keV

19000 —

o
o
g!wi:i'!

800
400

0__]'
-400 -

21000

20000 —

A Glassman
LN

\ T T \ T
3900 3950 4000 4050 4100

_ _Energy (keV)

NSF Physics Frontiers Center

\
4150

Proof of Principle: Key °O(a,y)*°Ne
resonance shown to be populated in

20|\/|g

B decay:

- New portal to measure I' /T" and

s accurately model X-ray burst light curves.

(Wrede et al. 2017)
Current limit: <4.3x10*
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C. Wrede et al., Phys. Rev. C 96, 032801 (R) (2017)

Proton Detector

upgrade to TPCin
2018/19 to measure I' /
I' via 2°Mg(Bpa)*>0



FRIB Project Summary

« FRIB will be a $730 million national user facility funded by the Department of
Energy Office of Science (DOE-SC), Michigan State University, and the State

of Michigan
« FRIB Project completion date is June 2022, managing to an early completion
in fiscal year 2021

« FRIB will serve as a national user facility for world-class rare isotope research,
(~1400 scientists currently engaged) and builds on more than 50 years of
nuclear science expertise developed at MSU

B

@‘ Facility for Rare Isotope Beams
\ U.S. Department of Energy Office of Science
@ Michigan State University




FRIB Provides Fast, Stopped, and Reaccelerated Beams

Reacceleration
to low astrophysical energies

200 feet
|

50 meters




FRIB Progress
- FRIBAcceIeratpr Tunnel
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BB} SECAR Recoil Separator Enables Direct Astrophysical
Reaction Rate Measurements at FRIB

=% U.S. DEPARTMENT OF Office Of

ENERGY science
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Radioactive Beam

Under construction
Completion end of 2021
Design: M. Couder, G. Berg Notre Dame
H. Schatz, F. Montes MSU

J. Blackmon LSU

K. Chipps, M. Smith ORNL Focal Plane

U. Greife CSM Recoil Detection
+ many other institutions
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Summary

There is now an opportunity to extract quantitative information
about accreting neutron star systems — discovery potential!
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High quality observational data (new missions)
- NICER, new mission concepts advancing
Consistently analyzed, curated observational data archives
- MinBAR
Nuclear facilities and experimental equipment
- FRIB, FAIR, ... is all happening
Consistently evaluated, curated nuclear data archives
—> JINA Reaclib, STARLIB, planned efforts in USNDP
Strategies for complete multi-parameter analysis
- Monash Group (Zac Johnston, ...) others?
Strategies for exploiting complete accretion sequences (burst
sequences and cooling in transients consistently)
2>7?
Bring it all together
—> JINA-CEE, this workshop
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