Use of (3He,n) reaction to
constrain reaction rates having
effect on X-Ray burst light curve

Doug Soltesz
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Reaction rates are important in modeling light curves

can access nuclei that are 2 protons above stable nuclei
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>Cu(p,y) has a noticeable impact
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°0Zn measurable via statistical approach
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These reactions can’t be directly measured yet

Astrophysical Lab
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Determining level density from the differential cross section
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Will adjust Talys parameters to measurement

* Normalize level density to a= adA/exp[y(Z — Z,)?]
discrete states (from Steve Grimes)

* ‘Fit’ Talys parameters to data

1 mexp|2val]

* Note if reduction in level density Vimo a

IS present. U=FE —A
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140(a,p) important within the HCNO cycle
Y (p,v)
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Indirect measurement also will be performed for **O(a,p)

Astrophysical Lab
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5. Almaraz-Calderon et al., Phys. Rev. C 86, 025801 (2012).



Silicon lampshade array in
development to measure rate
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