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Some superburst models were born as GRB models ~40 yr ago...
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v-ray bursts from thermonuclear

explosions on neutron stars
S. E. Woosley & Ronald E. Taam

Lick Observatory, Board of Studies in Astronomy and Astrophysics, University of California, Santa Cruz, California 95064

It is proposed that vy-ray bursts originate from carbon
detonations initiated by the accretion of matter on to the
surface of a neutron star. The observations are interpreted
in terms of this theory. Possible implications for the nuclear
powered model of giant X-ray pulses are discussed briefly.




« H/He accretion on NS, burning to C layer cooled by neutrinos
¢ Column depth ~3x10° g cm™, 10** g carbon layer

* Recurrence time of ~1 yr

* Possible detonation within < 1 ms, radiate ~5x10°° erg
 Cooling time ~10° — 10* s

* Fine structure from “hot bubbles” < 1 s

[End of their Conclusions]

The fact that the time between bursts is longer for the more
energetic bursts i1s an observed attribute of certain X-ray burst
sources??, Clearly a large range and diversity of nuclear outbursts
of various energies and time scales are possible for the possible
spread of accretion rates, neutron star masses, and magnetic
field configurations. The subject is ripe for continuing experi-
mental investigations and serious theoretical examination, and
hopefully this somewhat speculative paper will encourage
both. We especially urge that known v-ray burst sites be con-
tinously monitored for giant X-ray pulses and vice versa.




Early XRB Simulations |

(Woosley & Wever 1984;
Taam, Woosley, Lamb, Weaver 1993)
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Early XRB Simulations li

(Taam, Woosley, Lamb 1996)
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Structure of an Accreting Neutron Star
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Hydrogen Burning by CNO Cycle

“normal” CNO cycle ‘ “hot” CNO cycle

temperature-sensitive temperature-insensitive
T<8x10"K T>8%x10"K T
8x 107K

time for an eddy to burn its +.=11h (0-02 )( Xo )
hydrogen content by hot CNO cycle ™ 7 0.7




(Reader 2017, student project)
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Numerical Method

* Stellar evolution code KEPLER (Wweaver, Zimmerman, & Woosley 1978)

* Extended nuclear reaction library from neutron to proton drip

line and from H though Po
(Rauscher et al. 2003; Brown et al. 2002; Audi & Wapstra 1995; Moller et al. 1995)

* Implicit coupling of large reaction network to stellar structure
solver (energy generation, density (X,Ye), opacity)

* Adaptive reaction network adds all isotopes needed by
problem (and removes those no longer needed - save time)

* Include thermal and weak decay neutrino losses
(Petr Vogel, priv. comm.)

* Carry up to 1000 zones (or more in some cases!)



Mass excess data excerpt relevant for XRBs
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Standard Problem Setup

* Layer thickness (~few m) < neutron star radius (~few km)

-> |ocally in layer use Newtonian approximation
(results have to be corrected for GR effects to translate into observer frame)

* Use R =10km, M = 1.4 Msun, g = 1.9x10* cm/s? (Newtonian) (similar
to Schatz et al. 2001) (the same g is obtained in GR for a NS radius of ~11.2 km and
same gravitating mass)

* Accrete zones to surface of star (typically ~2x10*° g)

* Assume substrate luminosity of 0.15 MeV per accreted nucleon
(Schatz et al. 2001)

« 10%° g of substrate (carried on grid) relaxed to thermal equilibrium
before accretion is started

* No rotation, no magnetic field



Current Problem Updates

* Allow fine surface zoning with essentially arbitrary fine zones
— Setup for PRE burst studies

* Allow advection relative to grid
* Include energy terms from advection — heating/cooling

* Include decretion of mass at the bottom of grid — fixed domain

* Time-dependent heating and acccretion rates

* Heating due to angular momentum transport (dependent of process —
hydrodynamic / magnetic fields)

* Many updates on nuclear reaction rates (Cyburt — JINA lib)



Low Metallicity +
High Accretion Rate

hydrogen/helium
ignition bursts

STRUCTURE



. Start of first burst

L/ 1078 erg/s

0.5—

Convection starts and terminates
before rise of light curve

Significant burning after layers
have become convectively stable
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- Long time evolution
| of first burst

Tail of light curve (~200 s)
while rp-process is
proceeding
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e - Start of Burst

Ignition of burst in/by
ashes layer of

/ previous burst

=» compositional
inertia

GAIN

Heating of substrate
by energy from burst
=>» burning of “He

=» destruction of 2C

(at low He abundance the
12C(a,y) rate dominates over
the 3o rate)
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Long-Time
Evolution

Peak of light curve
less luminous and
—» tail decays faster
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rp-process continues
- for some time, but
some H remains
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The structure of subsequent
bursts is very similar

GAIN

zM



A New Steady
Burning Regime




Increasing accretion rate
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A New Steady Burning regime

61111(', (1013 erg S_l g_1 )J‘
p (10° gcm™)

Mass fraction

Y (g cm_g) Keek+ (2015)



Superbursts



querburst Phases
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querburst Breakout
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New “C+'?C Rate
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Question

How will this affect superburst ignition?

Could this allow a new burning regime for steady
state C burning in some regimes?



Summary

* Can do full-network 1D simulations, but still have many
limitations from input physics, including nuclear data

« WANTED - nuclear data for reaction rates, for me EC
rates from p-rich to n-rich nuclei, masses and energy
levels and the weak rates and nu loss rates to combine
current burst to consistent heating and cooling.
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